work. One of the authors (B.N.D.) is grateful to C.S.I.R. (New Delhi) for partial support of the work.

References

LAVES, F. & MUELLER, K. (1938). Z. Metallk. 30, 232.

Acta Cryst. (1965). 18, 574

OWEN, E. A. & PICKUP, L. (1933). Proc. Roy. Soc. A, 139, 526.

PERLITZ, H. (1944). Nature, Lond. 154, 606.

- SMITH, C. S. (1948). Metals Handbook, p. 1187. (LYMAN, ed.): Amer. Soc. Metals.
- SOULNIER, A. & MIRAND, P. (1960). Met. Treat & Drop-Forg. 27, 91.

Die Kristallstruktur des sauren Kaliummetasilikates K₄(HSiO₃)₄. Korrektur. Von WALTRAUD HILMER, Institut für anorganische Chemie der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof, Rudower Chaussee, Deutschland

(Eingegangen am 16. Oktober 1964)

Auf Einwand von Frau Prof. Boll-Dornberger, im $K_4(HSiO_3)_4$ würde höhere Symmetrie als monoklin vorliegen, ergab ein Intensitätsvergleich von Aufnahmen verschiedener Kristalle, dass die Abweichungen der Intensitäten von rhombischer Symmetrie auf Absorption zurückzuführen sind. Intensitätssymmetrie, Auslöschungen und *I*-Statistik nach Howells, Phillips & Rogers der früher angegebenen Aufnahmen führen jetzt zur Raumgruppe *Bmab.* Dann ist $a_{\text{rhomb.}} = |\mathbf{a} - \mathbf{c}|_{\text{mon.}} = 11,50$ Å, $b_{\text{rhomb.}} = b_{\text{mon.}} = 11,25$ Å, $c_{\text{rhomb.}} = |\mathbf{a} + \mathbf{c}|_{\text{mon.}} = 9,65$ Å; Z = 16. Berücksichtigung der höheren Symmetrie führt zu folgenden Koordinaten in der rhombischen Zelle:

y/b

250

043

184

0

x/a

250

500

302

. 15

0

	x/a	y/b	z/c
O(1)	0	310	560
O(2)	389	110	044
(=O(2, 3) mon.)			
O(4)	500	199	825
O(5)	227	029	870
(=O(5, 6) mon.)			

Die in der Veröffentlichung angegebenen *R*-Faktoren ändern sich von 13,1% auf 12,8% und von 9,5% auf 9,3% (bzw. 17,6% auf 17,8%). Ein zur Kontrolle berechneter Bereich von (1*kl*)-Reflexen führte ebenfalls zu guter Übereinstimmung zwischen F_o und F_c .

Die Si-O-Abstände ändern sich im Mittel um 0,01 Å (maximal um 0,03 Å), \gtrsim Si(1)-O(2,3)-Si(2)=140,7°.

Ich danke Frau Prof. Boll-Dornberger für ihren Hinweis.

Acta Cryst. (1965). 18, 574

K(1)

K(2)

Si(1)

Si(2)

Crystal data on FeAlO₃. By R. R. DAYAL, J. A. GARD and F. P. GLASSER, Department of Chemistry, University of Aberdeen, Scotland

z/c

737

822

986

0

(Received 21 September 1964)

The FeAlO₃ phase was discovered by Richardson. Ball & Rigby (1954), who synthesized it by heating a $1:1 \operatorname{Fe}_2 \tilde{O}_3 - \operatorname{Al}_2 O_3$ mixture in oxygen at $1400^{\circ} \operatorname{C}$. They also established that the product was a homogeneous single phase, distinct from α -Al₂O₃, α -Fe₂O₃ or α -(Al, Fe)₂O₃ solid solutions. This FeAlO₃ phase has subsequently been encountered by others, principally Atlas & Sumida (1958), Muan & Gee (1955) and Muan (1958). The latter workers explored the small range of stoichiometry and the limited range of thermodynamic stability of this phase; for example at $P_{O_2} = 1$ atm. the stability range is $1318^{\circ}-1495$ °C. The present authors encountered the FeAlO₃ compound during equilibrium studies in the system CaO-Al₂O₃-Fe₂O₃. Powder X-ray data were obtained from nearly pure preparations; these data (Table 1 (c)) agree very closely with those of Richardson et al. (1954), rather less well with those of Atlas (1958). Richardson et al. obtained a unit cell from trial-and-error procedures; the correctness of the cell was apparently supported by an analogy between FeAlO_3 and that of κ -Al₂O₃. Present efforts to improve the fit between d_o and d_c were, however, unsuccessful. Efforts to grow single crystals of FeAlO₃

would obviously be handicapped by the limited stability of this phase; the prospect of growing single crystals appeared uninviting. It was therefore decided to examine the relatively fine-grained powders by selected-area electron diffraction.

A 1:1 mixture of coprecipitated hydrous oxides of Fe^{3+} and Al^{3+} was prepared. Gentle ignition at *ca*. 500 °C produced a nearly amorphous starting material. Heating at $1370^{\circ} \pm 3$ °C for four days in air gave a nearly pure FeAlO₃ preparation, judging by the near absence of α -Al₂O₃ and α -Fe₂O₃ reflexions in powder photographs. Fe₃O₄ (magnetite) was absent. The sample adhered strongly to a small permanent magnet.

Samples were crushed gently and dispersed in isopropyl alcohol using ultrasonic vibration. Drops of this suspension were transferred to specimen grids carrying carbon films lightly coated with evaporated aluminum for calibration of the camera constant λL . The specimens were examined with an A.E.I. type EM3 electron microscope equipped with a goniometric stage permitting rotation and a maximum tilt of 45°, modified from a design of Burge & Munden (1960).

Approximately 30 crystals were examined. These all

(a) Electron diffraction data Richardson Unit cell: Orthorhombic, a=8.60, b=9.25, c=5.0 Å: et al. Present $\alpha = \beta = \gamma = 90^{\circ}$. Systematic absences: 0kl, l = 2n; hk0, (1954)studies $h + \dot{k} = 2n$; (h00), $\dot{h} = 2n$; (0k0), k = 2n; (00l), l = 2n. Probable d (Å) I d (Å) space group $Pc2_1n$ or Pcmn2.392.391(b) Density and cell content m Density (calculated from methylene iodide displacement, 27 °C), 4·41-4·45 2.33vw2.32Cell contents, Fe₈Al₈O₂₄ $2 \cdot 23$ 2.234w (c) X-ray powder data. Indices based on cell with a = 8.60, 2.182.180b=9.25, c=4.97 Å. Powder data obtained both on film 8 and with diffractometer. d-Spacings were obtained with a Philips Type PW 1051 diffractometer, Co $K\alpha$ radiation. 0.10 0 100

Diffra	actometer	standardiz	ed with S	i standard	l	212	m	2120 7	nw (330	$\frac{2 \cdot 10}{2 \cdot 10}$
Richardso et al.	n Present					2.02	vw	2.02	vvw	141 240	2.04 2.04
(1954) d (Å)	studies	d (Å)	Ι	hkl	d_c (Å)	1.95	vw	1.935 1	ns	$ \begin{array}{c} 222 \\ 420 \\ 411 \end{array} $	$1.96 \\ 1.95$
$6.30 \\ 4.69$	${m \atop vw}$	$6.30 \\ 4.63$	${m \atop w}$	$\begin{array}{c}110\\020\end{array}$	$6.30 \\ 4.62$					331 032	1.94
2.00		$\left\{\begin{array}{c} 4\cdot 2\\ 4\cdot 3\\ 2\cdot 3\end{array}\right\}$	vvw	$\left\{\begin{array}{c}101\\200\end{array}\right.$	$4.33 \\ 4.30 \\ 2.00$			1·889 i	v	$\begin{bmatrix} 132 \\ 241 \\ 202 \end{bmatrix}$	1 88, 1 89
3.90	w	3.91 3.66 3.49	mw vvw vvw	111 ?* ?†	3.92	(302) (d) Comparison of FeAlO ₃ and GaFeO ₃ phases					
		$3 \cdot 24_{5}$	vw	201	3.26			$FeAlO_3$	GaFe	O ₃ (Wo	od, 1960)
3.14	8	3 ·145	ms	$\left\{\begin{array}{c}121\\220\end{array}\right.$	$3.16 \\ 3.15$	a		8.60 Å		8·75 .	Å
2.90	8	$3.073 \\ 2.898$	vvw ms	211 130	3·08 2·90	c o		9·25 4·97	9·40 5·07		
2.69	vs	2.657 2.572	vs vvw	221 ?†	$2.60 \\ 2.67$			Orthorhombic Pseudohexagonal	Or Pse	Orthorhombic Pseudobexagonal	
2.50	m	2.499 m	m	$\left\{\begin{array}{c}131\\002\end{array}\right.$	$2.51 \\ 2.49$	Space g	roup	$Pc2_1n$ or $Pcmn$	1 30	$Pc2_1$	n
				[301	2.485		,	8 395 Å ³		8 417 Å	' . (3

* α -(Fe,Al)₂O₃ reflexion. For pure Fe₂O₃, d=3.66 Å, I=ms. † α -(Al,Fe)₂O₃ reflexion. For pure Al₂O₃, d=3.49 Å, I=vs. ‡ α -(Al,Fe)₂O₃ reflexion. For pure Al₂O₃, d=2.552 Å, I=vs.

had irregular shapes. The 0kl and h0l sections of the reciprocal lattice were readily examined. However only one crystal could be tilted to record the hk0 zone, and this crystal required ca. 45° of tilt. This apparent preferred orientation is probably due to cleavage. All the patterns could be indexed on the unit cell shown in Table 1 (a). The systematic absences were found from comparison of adjacent Laue zones (see, e.g. Gard, 1956; 1964).

These cell dimensions and systematic absences indicate that the compound is isostructural with $GaFeO_3$ (compare Table 1 (d)).

 α -Al₂O₃ and α -Fe₂O₃ (corundum type) contain layers of approximate close packing. The ideal density of a hypothetical corundum compound having the composition FeAlO₃ would be given by $\frac{1}{2}(d_{\alpha-Al_2O_3}+d_{\alpha-Fe_2O_3})$ $=\frac{1}{2}(3\cdot98+5\cdot25)=4\cdot62$ g.cm⁻³. This density is sufficiently close to that found for FeAlO₃ (4·45) to suspect that it also contains oxygen atoms in approximate close packing. Moreover, in the *hol* zone all reflexions h=3(2n+1)are systematically strong, indicating a hexagonal subcell with $c=2\cdot87$ Å $(=\alpha/3=c/\sqrt{3})$: the cell dimensions suggest four hexagonally packed layers of oxygens parallel to (010).

Efforts to determine the FeAlO₃ structure will be

postponed until the nearly complete results of the GaFeO₃ structure (Abrahams, personal communication) are available. FeAlO₃ is not, however, isomorphous with κ -alumina, judging from the hexagonal cell dimensions given by Brindley (1961) for the two κ -like phases: a = 9.70 Å, c = ?, and a = 16.78 Å, c = ?

Ι

ms

vu

1111

s

hkl

012

311

102

112

040

231

022

321

122

010

References

- ATLAS, L. M. & SUMIDA, W. K. (1958). J. Amer. Ceram. Soc. 41, 150.
- BRINDLEY, G. W. (1961). Amer. Min. 46, 1187.
- BURGE, R. E. & MUNDEN, H. R. (1960), J. Sci. Instrum. 37, 199.
- GARD, J. A. (1956). Brit. J. Appl. Phys. 7, 361.
- GARD, J. A. (1964). Chemistry of Cements, ed. H. F. W. TAYLOR, Vol II, p. 243. London and New York: Academic Press.
- MUAN, A. (1958). Amer. J. Sci. 256, 413.
- MUAN, A. & GEE, C. L. (1955). J. Amer. Ceram. Soc. 39, 207.
- RICHARDSON, H. M., BALL, F. & RIGBY, G. R. (1954). Trans. Intern. Ceramic Congr., 3rd Congr. Paris 1952. p. 173.
- WOOD, E. A. (1960). Acta Cryst. 13, 682.

 d_{c} (Å)

2.40

2.40

2.39

2.32

2.31

 $2 \cdot 24$

 $2 \cdot 20$

2.19

 $2 \cdot 13$